
2. WAVE PROPAGATION 

Abstract — The finite difference method (FDTD) is 
compared with a recently developed time domain beam 
propagation method (TD-BPM) using Padé approximants. 
Because of the slowly varying envelope a time step can be 
chosen, which is larger than in the case of the FDTD. In 
contrast the computation time for TD-BPMs will be affected 
by solving matrix equations including band matrices 
compared to simple matrix vector multiplications when using 
the FDTD. An investigation is applied considering both 
contrary effects and concluding, whether TD-BPMs can 
contribute to a reduction of computation time for the design of  
optical waveguides. 

I. INTRODUCTION 

The finite difference time-domain method [1] is one of 
the most powerful techniques for the analysis of a great 
variety of devices. When investigating optical waveguides 
FDTD methods can be inefficient as the computation time 
increases significantly dependent on the size of the device.  

In most modern applications such as THz- and optical 
waveguide techniques the frequency range of interest is 
defined by bandwidth and centre frequency. Consequently 
the analysis of such devices under the prerequisite of linear 
and time invariant material properties can be limited to the 
frequency band of interest. Time domain beam propagation 
methods meet this specification.  

Up to now different types of TD-BPMs can be 
distinguished, which are appropriate for the design of such 
devices, i. e. full-band [2], wide-band [3], and narrow band 
TD-BPMs [4]. All methods use an slowly varying envelope 
function approach. The propagation operator in time can be 
approximated by a well established approach based on the 
Padé-approximants, which is successfully used within beam 
propagations methods in the frequency domain [5] and 
recently in the time domain [6] and [7].  

When comparing Padé approximant approaches the 
following aspects are of considerable importance: As the 
Padé approximant approaches allow unconditionally stable 
algorithms and therefore arbitrarily large time steps, which 
are limited by accuracy conditions, only, an advantage in 
decreasing the computation time may occur at first sight. 
Contrary to a larger time step a higher computation time 
has to be spent compared to the FDTD method, because 
matrix equations instead of simple matrix vector 
multiplications have to be solved. 

If the time step can be chosen as high as possible, so that 
the computation time for FDTD methods exceeds the total 
computation time for TD-BPMs, then the latter method is 
an important alternative to commonly used FDTD methods. 

This contribution is aimed at this investigation. For the 
investigation the so called numerical dispersion caused by 
the finite difference approaches is a decisive criterion, as 
the accuracy of the solutions shall not be affected severely. 

II. THEORY 

For clarity the discussion is based on the scalar wave 
equation, the Helmholtz equation, but fundamental 
conclusions can still be made. Assuming a planar 
waveguide structure within the x-z-plane as well as a time 
and space dependent electrical field  t,z,x  we start 
with 
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 n is the refractive index n and the velocity is described 
by c. The formal solution of (1) with a slowly varying 
complex amplitude  t,z,x  and a centre frequency 0  is 
given by 

     tjexpt,z,xt,z,x 0  .                  (2) 

(2) can be substituted into (1) resulting in 
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The solution is given by 
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The propagation operator [PO] can be approximated by 
applying the following relation: 
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Hereby n denotes the order of Padé approximation. 

III. DISPERSION RELATIONS 

Based on the ansatz 
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   tjexpzkjexp 0                     (7) 

dispersion relations can be derived for different orders of 
approximations n. A TEM-wave in z-direction will be 
assumed for simplicity and a classical central finite 
difference scheme with uniform discretization in space z  
and time t  will be introduced. Hence, by using 

 tsinx   and  tcosy   we obtain the following 
dispersion relations: 
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for n=0 (Padé (1,0)-approximation) and 
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for n=1 (Pade (1,1)-approximation). 

IV. DISCUSSION 

Due to the slowly envelope approximation numerical 
errors occurring at cut off frequencies are the highest within 
the frequency band, so for example the propagation 
constants applying (8) and (9) will be compared with the 
exact propagation constant at the lower cut off frequency. 
The space discretization is given by 10/z 0   and the 
centre frequency 0  corresponds to the centre wavelength 
of m55,10   . Fig. 1 shows the propagation constants 
dependent on the time step for different bandwidths and 
Padé approximants. Explicit methods are unstable beyond 
0,0052.10-14 s due to the Courant stability condition [1]. As 
can be seen from Fig. 1, the time step can be chosen to be 
significantly higher than for FDTD methods when using 
Padé approximants.  

The maximum time step can be determined for a 
maximum relative error of 5%. Then a ratio N between the 
maximum time step and a time step according to the 
Courant stability condition is defined. From Fig. 2 we 
conclude, that the ratio N increases by applying smaller 
widths z . Furthermore, Table 1 shows, that the ratio N 
additionally increases with smaller bandwidths.  

The computation time for TD-BPMs is of the order 
O(M.B2) and for FDTD of the order O(M). M denotes the 
order of the propagation matrix after discretization and B 
the bandwidth of the resulting propagation matrix. Finally, 
the bandwidth B plays an important role, as the efficiency 
described by the ration N is reduced by a factor of B2. For 
1-D structures we have B2=9, as we have tridiagonal 
matrices, for 2-D structures, we typically have B2=3600, for 
3-D structures B2=106, respectively. Typical values are far 
below m02,0z    and 2THz. The resulting assessment 
leads to the conclusion, that the computing time can be 
considerably reduced, if narrow signal band widths are 
considered or a small discretization is necessary. The 
approach is predestined for planar waveguide structures. 

 

 
 

Fig. 1. Propagation constant dependent on dt for different bandwidths  
 

 
Fig. 2. N dependent on z for a bandwidth of 10THz 

TABLE I 
N for different bandwidths and discretization widths z  

z /bandwidth 100 THz 40THz 10 THz 2THz 

m02,0z     19  110  525  3687 

m05,0z     5  35  220  1312 

m16,0z     1  10  73  437 
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